1、前言:
a.背景:最近几年随着高新技术和消费应用的需要,有机合成高分子的使用明显增加,由于其理想的物理化学特性(强度质量比高抗腐蚀等)和相对较低的成本,聚合物已经能够取代越来越多的金属等传统工程材料,但由于聚合物和其他固体工程材料本质的差异,产生了重要的技术挑战,必须在制造过程中解决。近年来发现了许多聚合物表面改性以提高其粘接性、浸润性、可印刷性、染色性和其他重要的技术性能的方法(机械处理、化学浸润处理、火焰处理、光子和离子束及其他离子辐射、电晕放电和辉光放电等离子体等)。本文中的“粘接力”(adhesion)的概念可以简单定义为材料粘接系统被分离时所产生的机械阻力。“界面”(interphase)的概念可以粗略地定义为存在于接触的两固体间的这样一个区域,其结构和性能与接触的两相截然不同;
b.低压等离子体方法:宇宙中大多数物质都是以等离子体状态存在,等离子体可以简单地认为是部分或全部离子化的气体,这些带电粒子共同相互作用,自然界及人造的各种等离子体,可以根据其在带电粒子的密度n随电子温度Te(或动能u)变化图中的位置分类,这两个参数在很大的数量级范围内变化。要获得高质量、重复性好的等离子体,需要小心控制许多参数,现代等离子体的操作需要选择和控制的最主要参数有:
■反应气体及其混合气体的性质;
■气体压力和流速;
■放电能量密度;
■表面温度和工件的电子能量;
■能量产生器的激发频率,一般在获得系统时已经确定;
2、等离子体与聚合物表面的反应:
a.等离子体处理的物理化学效应:低压辉光放电等离子体处理材料的方式分为三种:等离子体蚀刻(通过形成挥发性的生成物将加工件的表面物干燥除去)、表面改性(明显改变材料的粘接等比表面特性,不除去或少量除去或增加表面材料)、薄膜沉积(一种或多种挥发性的母体化合物通过等离子体化学反应形成固体产物,如生成所谓的等离子体聚合物)。其中前两种不产生薄膜沉积,等离子体产生的高能粒子和光子与聚合物表面强烈相互作用,通常为自由基化学反应,大致可以产生四种主要的作用: 全文 »
《【扒一扒】日本高纯球形硅微粉材料生产商》: 作为一种无机非金属矿物功能性粉体材料,硅微粉广泛应用于电子材料、电工绝缘材料、胶黏剂、特种陶瓷、精密铸造、油漆涂料、油墨、硅橡胶等领域。 目前,世界上只有中国、日本、韩国、美国等少数国家具备硅微粉生产能力... 全文 ?