大声
【扒一扒】日本高纯球形硅微粉材料生产商
—— anndi

《【扒一扒】日本高纯球形硅微粉材料生产商》:  作为一种无机非金属矿物功能性粉体材料,硅微粉广泛应用于电子材料、电工绝缘材料、胶黏剂、特种陶瓷、精密铸造、油漆涂料、油墨、硅橡胶等领域。 目前,世界上只有中国、日本、韩国、美国等少数国家具备硅微粉生产能力... 全文 ?

1

第十一章 超高密度封装的应用和发展

1、便携电子设备中的封装技术:
a.移动电话(手机)中采用的封装技术;
b.数码摄像照相机中封装技术;
c.笔记本电脑中的封装技术;
d.便携电子设备中封装的技术课题:
■减小PWB母板的面积并降低价格;
■减小高频电路及模拟电路部分的面积;
■采用系统封装;
■采用三维封装形式进一步提高封装密度;
2、超级计算机中的封装技术:
a.超级计算机中封装技术概况:超级计算机性能的提高得益于LSI的高速、高集成化,同时要求LSI封装基板具有高的引线密度、低的介电损耗、高的散热能力等;
b.回路基板及实装技术:陶瓷回路基板替代树脂印制线路板、层间导体埋孔、计算机主机用陶瓷回路基板;
c.超级计算机封装的共同特征及发展前景:各家超级计算机封装的共同特征汇总如下:
■芯片搭载在陶瓷微载体内:
在载体实装到布线板上之前,能对半导体元件进行单个测试和老化筛选;
芯片搭载在陶瓷微载体内,采用倒装片或芯片电极面朝下的TAB微互联方式;
芯片发热采用间接方式冷却,即通过陶瓷微载体上面的导热柱,再循环水散热;
陶瓷微载体实装到布线板上采用焊料凸点或butt-PGA方式钎焊连接,可拆卸返修重装;
■基础布线板为玻璃陶瓷多层共烧板: 全文 »
0

第二章 电子封装工程的演变与进展

本章将论述电子封装工程的演变与进展,从半导体集成电路的发展历史及最新进展入手,先讨论用户专用型ASIC(application specific integrated circuits)以及采用IP(intellectual property:知识产权)型芯片的系统LSI;再以MPU(micro processor unit)和DRAM为例,分析IC的集成度及设计标准(特征尺寸);从电子设备向便携型发展的趋势,分析高密度封装的必然性;分析电子封装的两次重大革命;最后讨论发展前景极好的MCM封装。

一、20世纪电子封装技术发展的回顾:
1、电子封装技术发展历程简介;
2、电子管安装时期(1900—1950年);
3、晶体管封装时期(1950—1960年);
4、元器件插装(THT)时期(1960—1975年);
5、表面贴装(SMT)时期(1975—);
6、高密度封装时期(20世纪90年代初—);

二、演变与进展的动力之一:从芯片的进步看
1、集成电路的发展历程和趋势:
a.集成电路技术的发展经历;
b.ASIC的种类及特征对比:GA(gate array)、单元型IC、嵌入阵列型、FPGA(field programmable gate array)、IP核心系统LSI(IPC-IC:intellectual property integrated circuits)、全用户型IC(FCIC: full custom integrated circuits)、MCM(multi chip module)
c.IP核心系统LSI与MCM
2、集成度与特征尺寸:
a.逻辑元件的集成度与特征尺寸;
b.储存器元件的集成度与特征尺寸;
3、MPU时钟频率的提高;
4、集成度与输入/输出(I/0)端子数;
5、芯片功耗与电子封装:
a.芯片功耗与电子封装的发展趋势;
b.MCM的发热密度与冷却技术的进展;
6、半导体集成电路的发展预测;

三、演变与进展的动力之二:从电子设备的发展看
小型、轻量、薄型、高性能是数字网络时代电子设备的发展趋势,从某种意义上讲,这也是一个跨国公司,甚至一个国家综合实力的体现。从便携电话、笔记本电脑、摄像一体型VTR的发展历程可窥一豹而知全貌。三大携带型电子产品,为了实现更加小型、轻量化,不断地更新换代所用的半导体器件,特别是采用新型微小封装,对于BGA、CSP、MCM等新封装器件,采用之快,用量之大,是绝大多数电子产品所无法比拟的。由于BGA、CSP、MCM的大量采用,促使封装基板的发展趋势是:向着三维立体布线的多层化方向发展、向着微细图形和微小导线间距方向发展、向着微小孔径方向发展、多层板向薄型化方向发展;

四、电子封装技术领域的两次重大变革 全文 »

0

第八章 混合微电路与多芯片模块的材料与工艺

1、混合电路的基础是由某种耐熔陶瓷制造的基板,在基板上,通过某种膜技术制作金属化图形以形成安装焊盘和电路布线,并用来键合合互连必要的有源器件和无源器件,混合电路技术的另一个特点是能够制造无源元件;多芯片模组(MCM)与混合电路密切相关,它采用了更广泛的基板材料和金属化工艺,从而可以获得高得多的封装密度;

2、混合电路用陶瓷基板:
a.对电子应用来说,基板所需要的性能包括:
■高电阻率,基板必须具有很高的电阻率以隔离相邻的电路;
■高热导率,有助于使正常工作的电子元器件所产生的热从元器件中传导出去;
■耐高温,用于基板金属化和元器件组装的很多工艺都是在高温下进行的;
■耐化学腐蚀,溶剂、焊剂等类似材料都是有侵蚀性的,一定不想能腐蚀基板的化学结构;
■成本,基板材料的成本必须与最终产品的成本相适应;
b.陶瓷基板的性能非常适用于很多微电子系统,陶瓷就其本质来说是带有非常少自由电子的晶体,他们具有很高的电阻、热学和化学性能稳定,并具有很高的熔点。陶瓷的主要键合机理是离子键,也可能存在某种程度上的共价键;
c.陶瓷的表面性能:表面粗糙度和挠曲度;
d.陶瓷材料的热性能:
■热导率:材料的热导率是其载热能力的度量,其定义为q=-k(dT/dx),其中k为热导率W/(m•℃),q为热流量W/m2,dT/dx为稳态温度梯度℃/m;
■比热容:即每克物质温度每升高1℃所需的热量,以W•s/(g•℃)为单位,其定义表达式为c=dQ/dT,其中c为比热容,Q为能量W•s,T为绝对温度K;
■热膨胀系数(CTE&TCE):是由于随温度增加原子间距不对称增加引起的,大多数金属盒陶瓷在有意义的温度范围内显示了一种线性的各向同性的关系,而某些塑料本质上可能是各向异性的。其定义式为:α=[L(T2)-L(T1)]/[L(T1)(T2-T1)];
e.陶瓷基板的力学性能:
■弹性模量:E=CTE×ΔT,S=EY(胡克定律),其中E为应变,S为应力,Y为弹性模量;
■断裂模量(弯曲强度):定义式为σ=Mc/I,其中σ为应力MPa,M为最大弯矩N•m,c为中心到外表面的距离m,I为转动惯量N•m2,其中M、c、I等参数根据截面形状各异; 全文 »

    联系站长

    • Name:QiuBo QQ:1808976
      Email:Anndiqiu#Gmail.com
      Mobile Phone:13923499497

    热门文章

    添加站长微信,与站长在线实时交流

    QQ不在线时请用微信

链接