第十二章 附着在玻璃纤维上的硅烷(粘接促进剂在复合材料领域的应用)
1、引言:
a.20世纪40年代,以酚醛树脂、脲醛树脂、蜜胺树脂和不饱和聚酯等合成树脂为基础的玻璃增强复合材料获得了应用,第一次发现了材料强度/质量比的重大改进;
b.在增强材料的制造过程中,对商业化的玻璃纤维几乎都使用上浆或偶联剂进行预处理,偶联剂能同时与有机聚合物树脂和无机氧化物基材作用,既要保证增强材料的物理特性受潮气或湿度的影响相对较小,又要减少热循环处理中界面的应力集中;
c.偶联剂曾定义为促进矿石和有机物粘接的材料。Plueddemann更明确地定义为:提高界面连接键化学抵抗力(特别是水)的材料,虽然任何聚合物的极性基团都有助于粘接,使用有机硅烷偶联剂似乎是最佳胶粘剂,到目前为止,硅烷偶联剂已经发展成为最好的界面粘接促进剂,因此通常所说的偶联剂是指硅烷偶联剂;
2、界面剂—两类硅烷的发展史:两种商业硅烷,每一种都具有非常不同的技术历史,对于异氰酸硅烷和氨基硅烷两种情况,虽然存在不同的界面行为,但都有通过纤维整齐排列的可逆性提高复合材料增强效果的潜力玻璃上的烷氧基硅烷偶联剂的作用过程为:烷氧基团的水解、缩合反应、与玻璃硅醇的氢键结合、表面键的生成;
3、玻璃纤维上浆剂与许多组分的发展史:工业上的上浆剂不只是简单的硅烷偶联剂,硅烷确实在上浆剂配方中发挥关键作用,但是大多数情况下,甚至可能在上浆剂配方中不是主要组分,单独采用分子方法来理解上浆剂的行为非常危险,因为硅烷很少单独用作上浆剂,大多数上浆剂是复杂的具有专利权的混合物; 全文 »
1、与带有表面贴装技术回流工艺无铅焊接的兼容性:
a.兼容性评估的试验方案:
■材料:合金、焊剂和焊料黏胶;
■测量:熔化温度、吸湿能力(吸湿系数WI)、焊料球化(焊料球化系数SBI)、附加时间(附加时间系数TTI)、货架寿命(货架寿命系数SLI)、兼容性(兼容系数C)、截面;
b.兼容性研究结果:
■合金的兼容性:63Sn37Pb、SnAgBi系统、SnCu(SnAgCu、SnAgCuSb、SnBi、SnSb)系统、SnAg系统、SnZnBi系统;
■焊剂的兼容性;
■温度对合金兼容性的影响;
■温度对焊剂兼容性的影响;
■焊料凸起形成的截面:大空洞、IMC厚度;
c.需考虑的额外因素:
■SBI、WI和SAI的重要性;
■WI;
■合金的潜力;
■焊料黏胶沉积;
■没有元件的测试;
■表面处理;
■回流焊接外的其他问题;
d.兼容性评估;
2、无铅波焊的实现:波峰焊无铅化所遇到的挑战一点也不比回流焊少,由于波峰焊中焊料湿度和焊剂能力相对减少,无铅波峰焊对应的缺陷率比较高,尤其是穿孔和桥接缺陷。Diepstraten应用Taguchi实验设计方法研究了影响波峰焊接产量的潜在因素,在Diepstraten的工作中,选择了四个工艺参数:焊料温度、接触时间、PCB板上端预热温度和湿焊剂数量,Diepstraten总结出他实验中总体最好的设置是: 全文 »
1、引言:微生物处理方法作为一种不同的化学表面改性方法,与其他已知的处理技术相比,这种处理方法有许多优势:不需要昂贵的化学品和溶剂、在温和的温度条件下进行且不需要消耗能量、无生态污染、由于存在多种多样的微生物,对不同的聚合物材料可以有不同的处理程度;
2、不同微生物对聚合物的活性:微生物处理中的活性介质就是微生物新陈代谢的产物,了解不同微生物特征酶的特性,有可能选择菌株定向影响聚合物大分子中的化学键;一个比较简单的方法就是使用适应酶,在缺乏营养和/或能量的情况下,微生物开始逐渐适应新的基体,微生物纯菌株对新基体的适应是要耗时的,但是,对已经破坏了聚合物表面额微生物来说,这些适应菌株的活性强得多,它们很快停留在新的表面并引起更深度的分解;
3、微生物改性效率对聚合物性能的影响:不同聚合物低于微生物作用的能力取决于聚合物大分子的化学结构,天然聚合物最容易被微生物攻击,因为对于大量细菌和微小的真菌类来说,聚合物大分子通常是营养和能量的来源;对合成材料来说,它们暴露于微生物中的行为有很大的不同,然而没有一种合成聚合物能抵御所有生化侵蚀,一般来说,各种各样的微生物以及它们对合成物质的适应能力,使所有类型聚合物的改性称为可能;
4、控制微生物作用的影响因素:用微生物处理聚合物不需要任何特俗设备或复杂技术,首先是需要把微生物粘接在聚合物表面,可以通过延长处理时间和/或采用适应菌株来提高分解强度,聚合物分子的多分散性也影响其生化侵蚀的程度,当然控制生化改性的一个重要方法是使用多种微生物; 全文 »
1、引言:对聚合物表面进行可控化学改性的可行性,来自两个领域的发展,一是表面分析技术和仪器的有效性一直在稳定提高,二是表面分析能力的扩展使得关于表面结构和各种表面性能之间关系的基础知识一直在稳定增长,与改进和提高粘接性能直接相关的聚合物表面改性方法已经作了总结,通常可以分为干式和湿式化学法:.在干式改性法中,迄今为止应用最广的是等离子体处理;而酸处理和碱处理时赋予聚合物表面亲水性的最简单的湿式化学处理法;
2、表面接枝和接枝共聚:表面接枝可以通过以下两种不同方法来实现,偶联反应接枝和表面接枝共聚,偶联反应接枝是已经合成的聚合物链与基材表面的结合,而接枝共聚是单体直接在基材表面活性位开始反应,通过链增长而合成聚合物,两种情况的最终结果,都是聚合物链与基材表面形成共价键连接:
a.偶联反应接枝:绝大多数直接用聚合物链进行表面改性的实验研究,都涉及到吸附性连接而不是共价键连接,或者说是涉及到无机材料表面而不是有机聚合物表面,表面接枝机理涉及到基材和用于接枝的聚合物两者所含有的活性基团之间的化学偶合;
b.表面接枝共聚:它需要在基材表面产生活性物质,以引发单体的聚合,表面接枝共聚尽管适用阳离子和阴离子键合机理,但最常见的还是基于乙烯或丙烯酸单体的自由基反应,根据基材的化学性质和结构可分为以下几类:
■聚烯烃和丙烯酸聚合物基材;
■含卤聚合物;
■缩聚物:聚酯和聚酰胺;
■共轭聚合物;
■其他基材;
3、接枝改性表面的微观结构和性能:共聚物材料的表面性质完全不同于那些更具有刚性的结晶材料(如金属),现已知道随着周围环境的改变,表面的聚合物分子在重排时具有更大的自由度。热塑性聚合物、热固性聚合物和部分热固性聚合物通过接枝共聚后的各种表面微观结构可大致分为四类:
■完全渗透模型(热塑性基材);
■部分渗透模型(接枝物链迁移位阻);
■混合物模型(部分热固性基材);
■表面接枝模型(交联基材); 全文 »
1、简介:为了使焊接环境达到真正的无铅化,不仅是用作焊接的焊料本身要无铅,在印刷电路板上焊盘的表面处理和元件的引线等都要做到无铅化,印刷电路板无铅表面磨光处理方案如下:OSP、Ni-Au、Ag、Bi、Pd、Ni-Pd、Ni-Pd(X)、Sn、Ni-Sn、Sn-Ag、Sn-Bi、Sn-Cu、Sn-Ni等,下面分别介绍之;
2、有机焊料性能保护剂OSP:指的是加在PCB焊盘上的有机覆盖物,为提高焊接性能而特地保留下来的,也称作防锈剂,它包含树脂、松香和一氮二烯五元化学成分:
a.苯并三唑BTA:苯并三唑化学物质与亚铜氧化反应,形成聚合铜盐,这些聚合铜盐分子彼此排列整齐,在铜表面形成保护薄膜,具有三维结构;
b.咪唑:与BTA类似,烷基咪唑与氧化铜反应,在铜表面形成聚合物烷基咪唑铜膜;
c.苯并甲胺:博湖机理类似咪唑,后来替换的苯并咪唑BAs的出现使得焊接缺陷率等到了提高;替代型Bas的使用包括了以下优点:
■简单的搬运流程;
■能够承受严格的多次回流;
■BA OSP厚度:0.2~0.5um;
■提供了优秀的共面性;
■微波应用中表现最好;
■货架寿命2个月;
■表面处理费用是HASL的0.2~0.3倍;
■在产品工作期间,OSP涂覆的Cu焊盘的抗腐蚀性是一个要考虑的问题;
d.预焊剂:预焊剂(松香/树脂基涂覆)广泛地应用在焊料可连接性保持方面;
3、镍—金(Ni/Au):把金涂覆在Ni上替代HASL已经很多年了,涂覆的Ni具有很多优势,如表面较平、高稳定性、好的货架寿命和焊接能力较强,并在安装时少了桥接:
a.电解Ni/Au:电解Ni/Au包含了一个电解Ni的内层加上一个电解Au的外层,通常表示为EG,在引线键合应用中,它是经常用到的表面处理;
b.非电镀镍/浸金:非电镀Ni,厚度为2.5~5um,浸金厚度0.15~0.25um,是另一种Ni/Au表面处理的主要形式,可以标记为ENIG;
c.非电镀镍/非电镀(自动催化)金; 全文 »
1、综述:在一系列无铅焊料中,人们对下面的一组有着特殊的兴趣,是工业界首先要选择的,它们是:共熔Sn-Ag、共熔Sn-Cu、Sn-Ag-Bi、Sn-Ag-Bi-In、Sn-Ag-Cu-In、Sn-Ag-Cu-Sb、Sn-Zn以及Sn-Zn-Bi,在电子行业中它们的特性和潜在应用前景将在下面进行讨论;
2、共熔锡-银合金(Sn-Ag):
a.物理特性:共熔的Sn-Ag、96.5Sn-3.5Ag已经应用了好多年,其熔点比共熔Sn-Pb合金高38℃,同时具有更低的密度和更低的电阻;
b.力学性能:总体上最终Sn-Ag共熔合金的强度与共熔Sn-Pb相接近,其杨氏模量更高,延长性更低;根据Hwang等人的报道,在室温下蠕变阻抗按降序排列如下:62Sn-36Pb-2Ag>96.5Sn-3.5Ag>63Sn-37Pb>58Bi-42Sn>60Sn-60Pb>70Sn-30In>60In-40Sn;
c.浸润特性:Glazer报道说,测试温度在260-280℃之间时,大多数情况下浸润能力按以下次序递减:60Sn-40Pb>100Sn>95.5Sn-4Ag-0.5Cu>95Sn-5Sb>96.5Sn-3.5Ag;
d.可靠性:疲劳试验结果表明,合金的疲劳阻抗按升序排列如下:63Sn-37Pb<64Sn-36In<58Bi-42Sn<50Sn-50In<99.25Sn-0.75Cu<100Sn<96Sn-4Ag;
3、共熔锡-铜合金(Sn-Cu):
a.物理特性:在几种主要的无铅焊料中,共熔Sn-Cu的熔化温度是最高的,它的表面张力、电阻抗和密度都可以和共熔Sn-Ag相比拟;
b.机械特性:在25℃和100℃下,发生破裂的时间按下列次序增加:共熔Sn-Ag<Sn-Ag-Cu<共熔Sn-Cu<60Sn-40Pb;
c.浸润特性:在不使用激活流体情况下,浸润能力按下列次序递减:共熔Sn-Pb>Sn-Ag-Cu>Sn-Ag>Sn-Cu;Toyoda也研究了几种合金的传播性能,,传播性能按降序排列为:63Sn-37Pb>Sn-Ag-Cu-4.5Bi>Sn-Ag-Cu-7.5Bi>Sn-3.5Ag-0.75Cu>99.25Sn-0.75Cu>89sn-8Zn-3Bi; 全文 »
1、引言:本章主要讨论以下两种方法对金属-陶瓷粘接的效果,第一种方法是在金属沉积成膜前对基材进行表面改性,第二种方法是在金属沉积成膜后对所形成的界面进行改性;表面初始状态的表征对于确定表面改性的类型无疑是重要的,但对表面初始状态和最终状态进行研究的实例尚为数不多,尽管如此表面处理前后粘接强度的变化可以为此提供有价值的信息;本章还将分析低能离子轰击和脉冲激光辐射这两种表面/界面改性技术,在金属沉积到基材之前、金属沉积过程当中、金属沉积形成薄膜后这三个区别明显的阶段中的任一阶段,都可以实施表面改性,达到提高金属薄膜和绝缘体之间粘接强度的目的;
2、金属膜与绝缘材料之间化学键的形成:
a.金属和陶瓷的反应性粘接过程可以通过两种不同机理进行:沉积金属盒陶瓷穿过平坦界面的直接相互作用;在金属和陶瓷之间形成中间化合物;不过当中间化合物只有一两个金属原子单层厚时,这种差别可能变得非常微小;
b.氧气对金属盒氧化物的键合具有重要作用,热力学计算指出,铜、铁、镍只需要较低的氧气活性就能与Al2O3形成二元氧化物,但在相对较薄的薄膜上,动力学因素(如氧气在金属中的扩散性能)可能会阻碍界面氧化物的形成;
c.表面物理状态和表面结晶特征以及表面形态特征,对金属原子沉积后形成的机构具有明显的影响;
d.铜、金和过渡金属与Al2O3的相互作用一般都不强,但金属-陶瓷界面的过量氧气可以强烈促进其相互作用;
3、分析技术和粘接强度测试技术:
a.俄格(Auger)电子能谱:在俄格电子能谱中, 全文 »
1、相关标准:
a.作为一个可接受的无铅焊料替代品的标准如下:
■无毒;
■可以得到和价格合适;
■工艺温度在可接受范围内;
■吸湿性在允许范围内;
■能够形成可靠的连接点;
■材料可制造性;
b.美国国家制造科学中心NCMS无铅焊料项目勾画出的基本相应标准如下:
■毒性:要远远低于Pb;
■供应:要足够80%以上转化应用;
■费用:以体材料提供时,要低于10美元;
■固化温度:高于其所工作的温度;
■液化温度:小于225℃;(防止元件热损伤)
■浆状范围:小于30℃;(为了防止波峰焊时裂开)
■吸湿性能:要与共熔Sn/Pb相比拟;
■覆盖面积:大于85%;(在铜上,点蘸实验)
■热机械疲劳:大于75%;(相对于共熔Sn/Pb)
■热扩展系数:小于29ppm/℃;(防止焊料连接处局部应力)
■蔓延:大于500psi;(在室温下10000min内导致失效)
■延展性:大于10%(在室温下单轴应变下,对于制造焊料连线和预定型时都是非常重要的);
2、毒性:
a.OSHA PEL和ACGIH TLV:
Bi<Zn氧化<Sn(无机的)<Cu粉<Sb及其化合物<Sn有机物<Cu烟<In及其化合物<Ag粉盒Ag烟<Ag及其可溶化合物<无机Pb;
b.慢性毒性:
Bi<In<Zn(氧化)<Cu<Ag<Sn<Sb<Pb;
c.表面装配讨论报告:
Bi<Zn<In<Sn<Cu<Sb<Ag<Pb;
d.用于移动通信设备上电路板的化学成分:
Au<Sn<Al<Ag<Ni<Cu<Pb;
3、成本和可利用性:由于铅是最便宜的材料,所有无铅替代品都注定要比共熔Sn-Pb焊料贵,相对来说, 全文 »
1、简介:铅(Pb)曾经在工业中广泛应用了相当长一段时间,每年全球大概消耗500万吨铅,其中81%用在蓄电池,另外在军火和铅氧化中大约用掉10%,铅的毒性对人体健康是一个非常大的威胁,铅中毒的一般性临床表现根据其临床特征可分为营养型、神经型和脑系型。对于铅使用的关注是全球对环境方面关注的自然结果,对环保方面认识的提高可以由“德国蓝鸟”系统得到证明,它已经在欧洲广泛应用了一段时间,德国的消费者称之为“蓝色经济天使”,其官方名称为“环保标签”;
2、较早时期无铅焊料的研究状况:
美国议会首先进行了努力,想在电子产品焊料中禁止铅的使用,1990年提出了Reid S2638,随后调整为S729;1994年丹麦、瑞典、芬兰和冰岛共同签署提议,长期禁用铅;1997年瑞典政府发布提案在10年内禁止在任何产品中使用铅;基本 在同样的时间范围内,许多亚洲国家提出了回收法;
3、近期无铅焊料的研究状况:
1998年欧盟提出了一个指导性草案,称为“电子和电气设备废物处理意见(WEEE)”,欧盟委员会最终采纳了WEEE和ROHS(减少危险物品管理办法);1998年1月30日,日本电子发展联合会(JEIDA)和日本电子封装研究所(JIEP)提交了一份名为“无铅焊料商品化的挑战和努力—无铅焊料2000年商品化线路图”;一些日本的主要原型设备生产商(OEMs)已经开始联合推进电子产品的回收进程,其中包括索尼、日立、松下、东芝、NEC、富士、三菱、NTT等;
4、日本在这方面若干措施的影响:
在2001年前,日本领先的OEM供货商将提供在互连系统中不含铅的产品,这将会促使日本排斥外来的不符合环保标准的产品,另外,日本已有的产品将证明欧洲立法关于在2007年前要求产品含铅量减少、电子产品回收等方面是合理的,因此对世界其他国家加速无铅化进程增加了一定的压力; 全文 »
1、引言:准分子激光紫外(UV)辐射提供了一种新的粘接前表面处理和表面改性技术,能准确处理各种材料和粘接件,这种技术可替代对生态不友好的常规化学蚀刻和研磨处理方法,通过化学、物理或机械分析的方法来测试UV辐射对聚合物、复合材料、金属及陶瓷的处理效果,通过不同几何形状的粘接件暴露在高温和潮湿环境中及敞开时间来检测粘接强度和耐久性;
2、粘接的表面预处理:
a.概述:通过核实表面处理改善粘接存在五种不同粘接机理:机械互锁理论、扩散理论、电机理、吸收机理、酸碱机理;
b.塑料是最难处理的粘接件,因为:
■塑料类型很多,它们的行为与特征有很大的不同;
■与金属及陶瓷相比,塑料盒胶粘剂的机械性能对温度依赖性更强;
■大多数塑料具有较低的表面能,有必要通过塑料表面苛刻的预处理提高胶粘剂对塑料的润湿能力;
■塑料包含众多组分,它们在一组塑料中的作用完全不同,特别是润滑剂与增塑剂严重影响粘接,这种影响与组分从本体到表面的迁移和温度的影响有关;
c.预处理工艺,可大致分为三种类型:
■机械工艺:喷砂处理、SiC或SACO喷砂、打磨刷涂处理、研磨处理、去皮处理;
■化学处理:CSA(铬酸-硫酸)浸泡处理、臭氧处理、有机溶剂处理-蚀刻、使用化学活性物质覆盖-底涂、活性金属的沉积;
■物理化学处理工艺:低压等离子体处理、电晕放电处理、热处理、火焰处理、离子蚀刻、激光辐照、UV光辐照;
3、激光的类型:
a.多种商业应用的激光系统已用于材料的表面处理,包括CO2、连续和脉冲的涂钕的钌-铝氧化物(红宝石)及准分子系统。用于表面改性的主要包括CO2、Nd:YAG和各种波长的准分子激光,此类激光工作区域是在红外区,与此存在明显区别的是准分子激光工作区域是紫外区,产生相同的热效应,红外比紫外激光所需要的入射能量多得多,从而导致大量结构与组成的变化,由于紫外工艺(微米)比红外工艺(几百微米)的熔融深度要少得多,后者处理的最后表面要平滑的多;
b.选择激光源和操作参数需考虑大量重要因素,包括波长、能量密度、光束的直径、光速的速度、光速的聚焦、光速的交迭、输出模式、脉冲长度、扫描及循环速率;
c.准分子激光是化学气体激光,基于分子从强的激发状态到弱的不稳定基态的发射,激光使用稀有气体的卤化物如ArF,是一种重要的准分子激光物质; 全文 »
《【扒一扒】日本高纯球形硅微粉材料生产商》: 作为一种无机非金属矿物功能性粉体材料,硅微粉广泛应用于电子材料、电工绝缘材料、胶黏剂、特种陶瓷、精密铸造、油漆涂料、油墨、硅橡胶等领域。 目前,世界上只有中国、日本、韩国、美国等少数国家具备硅微粉生产能力... 全文 ?